Solutions for Homework 2

- The isotropic point kernel and the anisotropic point kernels are used to do problems
 a and b, respectively.
 - 1a) The differential length for the ring source is $d\ell = r_0 d\Phi$.

$$\phi(z_0) = \int_0^{2\pi} \frac{q_0}{4\pi(r_0^2 + z_0^2)} r_0 d\Phi = \frac{q_0 r_0}{2(r_0^2 + z_0^2)}.$$

1b) An extra factor of μ is present in the kernel because of the μ -dependence of the source.

$$\phi(z_0) = \int_0^{2\pi} \frac{q_0}{4\pi (r_0^2 + z_0^2)} \frac{z_0}{(r_0^2 + z_0^2)^{1/2}} r_0 d\Phi = \frac{q_0 r_0 z_0}{2(r_0^2 + z_0^2)^{3/2}}.$$

- The isotropic point kernel and the anisotropic point kernels are used to do problems a and b, respectively.
 - 2a) The differential surface for the disk source is $dA = r dr d\Phi$.

$$\phi(z_0) = \int_0^{2\pi} \int_0^{r_0} \frac{q_0}{4\pi (r^2 + z_0^2)} r \, dr \, d\Phi$$
$$= \frac{q_0}{4} \ln \left\{ 1 + \frac{r_0^2}{z_0^2} \right\}.$$

2b) An extra factor of μ is present in the kernel because of the μ -dependence of the source.

$$\phi(z_0) = \int_0^{2\pi} \int_0^{r_0} \frac{q_0}{4\pi (r^2 + z_0^2)} \frac{z_0}{(r^2 + z_0^2)^{1/2}} r dr d\Phi$$
$$= \frac{q_0}{2} \left\{ 1 - \frac{z_0}{\sqrt{r_0^2 + z_0^2}} \right\}.$$

- 3a) The limit as $r_0 \to \infty$ of $\frac{q_0}{4} \ln \left\{ 1 + \frac{r_0^2}{z_0^2} \right\}$ is ∞ .
- 3b) The limit as $r_0 \to \infty$ of $\frac{q_0}{2} \left\{ 1 \frac{z_0}{\sqrt{r_0^2 + z_0^2}} \right\}$ is $\frac{q_0}{2}$.
- 4a) First we use delta-function sources with vacuum boundary conditions.
 - a) The equation to be solved is

$$\mu \frac{\partial \psi}{\partial x} = \frac{q_0}{4\pi} \delta(x), \quad \text{for } \mu > 0,$$

on the interval, $[0, \infty)$, with $\psi(0) = 0$. Dividing the above equation by μ and integrating it over $(0 - \epsilon, 0 + \epsilon)$, where ϵ is arbitrarily small, one finds that the solution must jump at x = 0 by $\frac{q_0}{4\pi\mu}$. Thus the angular flux solution is

$$\psi(x) = \frac{q_0}{4\pi\mu} \,.$$

It is clear that scalar flux associated with this angular flux solution is infinite.

b) The equation to be solved is

$$\mu \frac{\partial \psi}{\partial x} = \frac{q_0 \mu}{4\pi} \delta(x), \quad \text{for } \mu > 0,$$

on the interval, $[0, \infty)$, with $\psi(0) = 0$. Dividing the above equation by μ and integrating it over $(0 - \epsilon, 0 + \epsilon)$, where ϵ is arbitrarily small, one finds that the solution must jump at x = 0 by $\frac{q_0}{4\pi}$. Thus the angular flux solution is

$$\psi(x) = \frac{q_0}{4\pi} \,,$$

and the scalar flux solution is

$$\phi = 2\pi \int_0^1 \frac{q_0}{4\pi} d\mu = \frac{q_0}{2}.$$

- 4b) Next we use incident fluxes with zero sources.
 - a) The equation to be solved is

$$\mu \frac{\partial \psi}{\partial x} = 0$$
, for $\mu > 0$,

on the interval, $[0, \infty)$. This equation obviously has a constant solution. Remembering that, in general, one divides a surface source by $\overrightarrow{\Omega} \cdot \overrightarrow{n}$ to obtain the corresponding incident flux, we divide $\frac{q_0}{4\pi}$ by μ to obtain the incident flux, which is also the solution:

$$\psi(x) = \frac{q_0}{4\pi\mu} \,.$$

As previously noted, the corresponding scalar flux is infinite.

a) The equation to be solved is

$$\mu \frac{\partial \psi}{\partial x} = 0$$
, for $\mu > 0$,

on the interval, $[0, \infty)$. We divide $\frac{q_0\mu}{4\pi}$ by μ to obtain the incident flux, which is also the solution:

$$\psi(x) = \frac{q_0}{4\pi} \, .$$

As previously noted, the corresponding scalar flux solution is

$$\phi = \frac{q_0}{2} \, .$$

5) Starting with the integral equation for the angular flux,

$$\psi(\overrightarrow{r}, \overrightarrow{\Omega}) = \psi(\overrightarrow{r} - s_b \overrightarrow{\Omega}, \overrightarrow{\Omega}) \exp\left[-\int_0^{s_b} \sigma_t(s') \, ds'\right] + \int_0^{s_b} \mathcal{Q}(\overrightarrow{r} - s \overrightarrow{\Omega}, \overrightarrow{\Omega}) \exp\left[-\int_0^s \sigma_t(s') \, ds'\right] \, ds, \tag{1}$$

we derived various kernels for the scalar flux in class. This was basically done by integrating Eq. (1) over all directions and manipulating the integrand. The final result was

$$\phi(\overrightarrow{r}) = \oint_{\Gamma} \frac{\psi(\overrightarrow{r}', \overrightarrow{\Omega}_{0}) |\overrightarrow{\Omega}_{0} \cdot \overrightarrow{n}|}{\|\overrightarrow{r}' - \overrightarrow{r}\|^{2}} \exp\left[-\tau(\overrightarrow{r}', \overrightarrow{r})\right] dA' + \int_{\mathcal{D}} \frac{\mathcal{Q}(\overrightarrow{r}'', \overrightarrow{\Omega}_{0})}{\|\overrightarrow{r}'' - \overrightarrow{r}\|^{2}} \exp\left[-\tau(\overrightarrow{r}'', \overrightarrow{r})\right] dV'',$$

$$(2)$$

where

$$\overrightarrow{\Omega}_0 = \frac{\overrightarrow{r} - \overrightarrow{r}_0}{\|\overrightarrow{r} - \overrightarrow{r}_0\|},\tag{3}$$

with \overrightarrow{r}_0 denoting the integration variable associated with the kernel, e.g., $\overrightarrow{r}_0 = \overrightarrow{r}'$ in the area kernel and $\overrightarrow{r}_0 = \overrightarrow{r}''$ in the volumetric kernel. Since we want $\overrightarrow{J} \cdot \overrightarrow{n}_0$,

where \overrightarrow{n}_0 is an arbitrary normal, we need simply multiply Eq. (1) by $\overrightarrow{\Omega} \cdot \overrightarrow{n}_0$ before we perfom the angular integration:

$$\psi(\overrightarrow{r}, \overrightarrow{\Omega}) \left(\overrightarrow{\Omega} \cdot \overrightarrow{n}_{0}\right) = \psi(\overrightarrow{r} - s_{b} \overrightarrow{\Omega}, \overrightarrow{\Omega}) \left(\overrightarrow{\Omega} \cdot \overrightarrow{n}_{0}\right) \exp\left[-\int_{0}^{s_{b}} \sigma_{t}(s') \, ds'\right] + \int_{0}^{s_{b}} \mathcal{Q}(\overrightarrow{r} - s \overrightarrow{\Omega}, \overrightarrow{\Omega}) \left(\overrightarrow{\Omega} \cdot \overrightarrow{n}_{0}\right) \exp\left[-\int_{0}^{s} \sigma_{t}(s') \, ds'\right] \, ds. \tag{4}$$

Carrying out the very same manipulations on Eq. (4) as were originally carried out on Eq. (1), we get

$$\overrightarrow{J}(\overrightarrow{r}) \cdot \overrightarrow{n}_{0} = \oint_{\Gamma} \frac{\psi(\overrightarrow{r}', \overrightarrow{\Omega}_{0}) |\overrightarrow{\Omega}_{0} \cdot \overrightarrow{n}| (\overrightarrow{\Omega}_{0} \cdot \overrightarrow{n}_{0})}{\|\overrightarrow{r}' - \overrightarrow{r}\|^{2}} \exp\left[-\tau(\overrightarrow{r}', \overrightarrow{r})\right] dA' + \int_{\mathcal{D}} \frac{\mathcal{Q}(\overrightarrow{r}'', \overrightarrow{\Omega}_{0}) (\overrightarrow{\Omega}_{0} \cdot \overrightarrow{n}_{0})}{\|\overrightarrow{r}'' - \overrightarrow{r}\|^{2}} \exp\left[-\tau(\overrightarrow{r}'', \overrightarrow{r})\right] dV''. \tag{5}$$

6a) For this problem, $\overrightarrow{\Omega}_0 \cdot \overrightarrow{n}_0 = \mu$, so there is just another factor of μ in the integrand:

$$J_z(z_0) = \int_0^{2\pi} \frac{q_0}{4\pi (r_0^2 + z_0^2)} \frac{z_0}{(r_0^2 + z_0^2)^{1/2}} \, r_0 \, d\Phi = \frac{q_0 r_0 z_0}{2(r_0^2 + z_0^2)^{3/2}} \,.$$

Note that the current for an isotropic source is the same as the scalar flux for a cosine-law source (see Problem 1b).

6b) For this problem, $\overrightarrow{\Omega}_0 \cdot \overrightarrow{n}_0 = \mu$, so there is just another factor of μ in the integrand:

$$J_z(z_0) = \int_0^{2\pi} \frac{q_0}{4\pi (r_0^2 + z_0^2)} \frac{z_0^2}{(r_0^2 + z_0^2)} r_0 d\Phi = \frac{q_0 r_0 z_0^2}{2(r_0^2 + z_0^2)^2}.$$

7a) For this problem, $\overrightarrow{\Omega}_0 \cdot \overrightarrow{n}_0 = \mu$, so there is just another factor of μ in the integrand:

$$J_z(z_0) = \int_0^{2\pi} \int_0^{r_0} \frac{q_0}{4\pi (r^2 + z_0^2)} \frac{z_0}{(r^2 + z_0^2)^{1/2}} r \, dr \, d\Phi$$
$$= \frac{q_0}{2} \left\{ 1 - \frac{z_0}{\sqrt{r_0^2 + z_0^2}} \right\}.$$

Note that the current for an isotropic source is the same as the scalar flux for a cosine-law source (see Problem 2b).

7b) For this problem, $\overrightarrow{\Omega}_0 \cdot \overrightarrow{n}_0 = \mu$, so there is just another factor of μ in the integrand:

$$J_z(z_0) = \int_0^{2\pi} \int_0^{r_0} \frac{q_0}{4\pi (r^2 + z_0^2)} \frac{z_0^2}{(r^2 + z_0^2)} r dr d\Phi$$
$$= \frac{q_0}{4} \left\{ 1 - \frac{z_0^2}{r_0^2 + z_0^2} \right\}.$$

- 8a) The limit as $r_0 \to \infty$ of $\frac{q_0}{2} \left\{ 1 \frac{z_0}{\sqrt{r_0^2 + z_0^2}} \right\}$ is $\frac{q_0}{2}$.
- 8b) The limit as $r_0 \to \infty$ of $\frac{q_0}{4} \left\{ 1 \frac{z_0^2}{r_0^2 + z_0^2} \right\}$ is $\frac{q_0}{4}$.